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ABSTRACT

The formalism of Schramm and Wasserburg (1970) for deter-
mining the mean age of the elements is extended. Model-
independent constraints (constraints that are independent of a
specific form for the effective nucleosynthesis rate and Galactic
chemical evolution over time) are derived on the first four terms in
the expansion giving the mean age of the elements, and from these
constraints limits are derived on the total duration of nucleosyn-
thesis. These limits require only input of the Schramm-Wasserburg
parameter A™* and of the ratio of the mean time for formation of
the elements to the total duration of nucleosynthesis, t,/T. The
former quantity is a function of nuclear input parameters. Limits
on the latter are obtained from constraints on the relative rate of

nucleosynthesis derived from the 2*Th/®*U, 2¥%U/®%U and shorter-
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lived chronometric pairs. Because ™Re may decay [aster in hot
stars than in interstellar space, its effective lifetime rﬁay be less
than the laboratory value; thus, using the laboratory decay rate
gives an upper limit on A™* for the "Re/'®Os pair, which gives an
upper limit on the duration of nucleosynthesis. A lower limit on
A™* can be determined from the 2Th/®®U pair, which then yields a
lower limit on the duration of nucleosynthesis. The results found
are that the effective nucleosynthesis rate was relatively constant
over most of the duration of nucleosynthesis and that
043 < 1,/T < 059. From these constraints on t,/T, a nearly model-
independent range for Tg,, the age of the Galaxy, is obtained:
8.7 Gyr < Tgy < 28.1 Gyr. Improvements in nuclear and meteoritic
data could lead to a dramatic narrowing of this model-independent
range in the near future. Detailed Galaxy evolution models give a
far narrower range on the age, but the results depend on assump-

tions about the specific form of the effective nucleosynthesis rate.

Subject headings: abundances - galaxies: evolution - galaxies:

Milky Way - nucleosynthesis

1. Introduction

Nucleocosmochronolgy employs knowledge of abundance and production
ratios of radioactive nuclides and of the chemical evolution of the Galaxy to

obtain information about timescales over which the solar system elements were
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synthesized. The field may be said to have begun with Rutherford’s (1929)
attempt to infer the duration of the time for synthesis of uranium isotopes.
Model-dependent cosmochronology, which assumes models of Galactic chemical
evolution, was developed by Burbidge et al. (1957) who considered sudden syn-
thesis and constant synthesis models and by Fowler and Hoyle (1960) who used
exponentially decaying synthesis models. These authors relied on the 2*Th/**®U-
and #%U/*¥U chronometric pairs. Later Wasserburg et al. (1969), Hohenburg
(1969), Fowler (1972), and Kohman (1972) included the shorter-lived chro-
nometric pairs *Pua/**U and /71 in their model-dependent studies. Also Clay-
ton (1664) introduced the ®"Re/'™0s chronometric pair which held great promise
for accurate determinations of the Galaxy's age since "Re has a 43 Gyr halflife,
much greater than the suspected age of the Galaxy. The 1870's saw the intro-
duction of more detailed Galaxy evolution models in terms of which model-
dependent cosmochronology could be further studied (e.g. Talbot and Arnett
1973, Tinsley 1975, 1977, 1980; Ostriker and Thuan 1975; Hainebach and
Schramm 1977). Work in model-dependent nucleocosmochronology continues in
the framework of both the exponential model for nucleosynthesis (e.g.
Thielemann et al. 1983a, 1983b; Thielemann 1984; Thielemann and Truran 1985)

and more detailed nucleosynthesis models (e.g. Yokoi et al. 1983; Clayton 1984a,

1984b, 1984¢).

Despite the considerable amount of work done on nucleocosmochronology,
many uncertainties in the nuclear and meteoritic data at present preclude accu-
rate conclusions about the Galaxy’s age. For the Re/Os chronometric pair, astra-

tion may significantly increase the ®'Re g-decay rate over the laboratory rate



-4-

(Takahashi and Yokoi 1982; Yokoi et al. 1983), thereby greatly affecting Galaxy
age determinations from this pair. Furthermore, the low lying excited nuclear
state of ®Re at 9.8 kev complicates the subtraction of s-process '"™0Os from the
total ¥0s abundance (Fowler 1973; Holmes et al. 1976; Woosley and Fowler
1979) as do possible s-process branchings in the W, Re, and Os region {Arnould
1974; Arnould et al. 1984). As the r-process only abundance of *0s is required
for use of the Re/Os pair for cosmochronology, the two above uncertainties make
accurate Galactic age conclusions from this pair difficult. Also, s-delayed fission
and neutron emission may greatly affect the actinide production ratios
(Thielemann et al. 1983a, 1983b; Meyer et al. 1985), thereby making age predic-
tions from those pairs change drastically from earlier predictions. We discuss
these nuclear data uncertainties and also metecritic data uncertainties in some-

what greater detail in section VII of this paper.

Assumptions about the model for Galactic chemical evolution are also a
source of error in age estimates for the Galaxy. I the wrong model is chosen,
factor of two or so errors may find their way into age determinations. For this
reason we may turn to model-independent cosmochronology, which studies those
cosmochronological conclusions that may be made about the Galaxy's age
without reference to a model for Galaxy nucleosynthesis. Schramm and Wasser-
burg (1970; hereafter SW) showed that the main thing that nucleocosmochronol-
ogy can give us independent of Galactic evolution model is the mean age of the
elements, which provides us with a lower limit on the Galaxy’s age. We may also
ask whether it is possible to obtain a model-independent upper limit to the

Galaxy’s age. If so, then a model-independent range will be available as a
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framework within which more model-dependent work may be considered.

It is the goal of this paper, then, to develop as model-independent a range
for the Galaxy's age as possible that takes all nuclear and meteoritic data uncer-
tainties into account. As the mean age of the elements provides a natural,
model-independent lower limit on the Galaxy's age, our major task is to obtain a
model-independent upper limit. We derive such an upper limit in section IV
from an expansion of the equation giving the mean age of the elements in
moments of the normalized effective nucleosynthesis rate made in section IlL
This limit depends only on t,/T, the ratio of the mean time of formation of the
elements to the total duration of nucleosynthesis, and on model-independent
data. In section V we show that the *2Th/*®y, ®5y %y, and 2Pu/>U chro-
nometric pairs can give us constraints on the relative rate of nucleosynthesis over
the history of the synthesis of the solar system material. In section VI we use the
results of section V to derive limits on t,/T which then allow us to derive nearly
model-independent limits on the Galaxy's age. Section VII discusses input data
and uncertainties in these data. In section VIII we present our results and in sec-

tion IX our conclusions.

IL. The Basic Equations and Galaxy Evolution Framework

The general equation governing the time evolution of the abundance N, of

nuclide i in the interstellar medium of the Galaxy is (SW)

dN;(r,t)
dt

= —\Nj(r,t) + B(r,Nyt), (2.1)

where ), is the decay rate for nuclide i and B(r, N; ,t) is the generalized
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production and destruction (that is, destruction by means other than radicactive
decay) function. To be useful for nucleocosmochronology, equation (2.1) must be
simplified by means of a Galactic evolution model. A general model is that of
Tinsley (1975); see also Hainebach and Schramm (1977) and Symbalisty and

Schramm (1981). The result of this model is that equation (2.1) is linearized:

dN{{t)
dt

= _NNj(t) - w(t)Nj(t} + P(t). (2.2)

w(t) is a time-dependent parameter representing the rate of movement of metals
into and out of the interstellar medium for reasons other than decay, (t) is the
amount of mass going into stars per unit time, and P, is the number of nuclei pro-
duced per unit mass going into stars. It should be noted that in going from equa-
tion (2.1) to equation (2.2), we have assumed that the history of material going
into the solar system was spatially homogeneous and that the instantaneous recy-

cling approximation holds.

It is now possible to solve for the abundance N, of nuclide i at a given time
by integration of equation (2.2). We do this in the context of the scenario for
evolution of the material making up the solar system shown in Figure 1. In Fig-
ure I, T is the time of the last event contributing to formation of the elements
going into the solar system, A is the time interval between this last nucleosyn-
thetic event and the solidification of the solid bodies in the solar system, and
te { = 4.55 x 10%r) is the age of the solid bodies in the solar system. It is clear
that, in this scenario, A represents a period of free decay for the elements. Since
the meteoritic material is a closed system after T+A, however, it gives abun-

dances at times as early as T+A with minimal uncertainty due to chemical
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fractionation. Integration of equation (2.2), then, for t=0 to t=T followed by

free decay over an interval A yields

T

Ni(T + &) = P; exp(-}A&) exp(-MT-(T)) [#(t)exp(ht + v(t))dt, (2.3)
1]

where

nt) = [w(E)d¢ (2.4)

and we have assumed P, to be constant in time.

Equation (2.3) is the point of departure for the rest of this paper.

II1. Expansion in Moments

The abundance N(T+4) in equation (2.3) is dependent upon the effective
nucleosynthesis rate ye”; therefore, information is needed about the chemical evo-
lution over the nucleosynthesis interval T before equation (2.3) can be solved.
SW have shown, however, that useful constraints on the Galaxy's age can be
obtained, independent of any information on Galaxy evolution, through expan-
sion of the equation for N(T+A} in moments of the production function about
the mean age. We proceed in analogous fashion, using the effective nucleosyn-

thesis rate ye” in place of SW's 7).

We begin by defining ¢(t), the normalized effective nucleosynthesis rate as

- Ve

where <y>>, the average effective nucleosynthesis rate, is defined as
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T
<yp> = -% [veat. (3.2)
0
In this case, equation (2.3) becomes
T S
N(T + 8) = P, T <¢> exp(-\A) exp(-NT - v(T)) [#{t)e dt. (3.3)
o

Now, with Tinsley's (1975) definition of the mean time for formation of the ele-

ments

1
T<y>

i

T T

t, Jtyerdt = [to(t)dt, (3.4)
0 0

we can write

T
N(T + A) = Py T<y> exp(-)A) exp{-v(T) exp(->(T - t,)) jqﬁ[t)exi(t_t‘)dt. (3.5)
0

Analogously with SW, we expand equation {3.5) in moments of the normalized

effective nucleosynthesis rate ¢(t). This yields

N{T + A) = P T<¥> exp(-MA)exp(-AT)) [1 + &), {3.6)
where
fe 3, (3.7)

and p,, the nth moment of 4(t) about t,, is
T
po = [(t - t,)"¢(t)dt. (3.8)
0
If we divide our expression for N{T + A) in equation (3.6) by the corresponding

one for a different nuclide, nuclide j, and take the natural logarithm, we obtain
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I [(P/P)}/(N{T + A)/N(T + A))] 1 1+ 6

T-t, = Yoy Ak gl (3.9)
With the convenient definition of the one event age AF™,
In|(Py/P)/(N(T + A)NYT + A _ 1nR(ij)
max — = i
we find
T-t,=A]™- A+ )xiﬁ}\jln[1+6j' (3.11)

Equation (3.11) is exactly analogous to equation (6) of SW. The difference
between the two is that g{t) in SW lacks the factor ¢* contained in ¢(t) (equation
(3.1)). This difference shows up in the expansion of equation (3.11) to 4th order

in u,

(M + Np2 . (A + A+ Aua

T-t, =AM _A
v u + 2 6

4

T Y (3.12)

LB g M-
Y

+ 305
The w(t) dependence is now contained in the u’s as opposed to being contained in

the coefficients of the u’s in SW. Also t, replaces SW's <r>.
Since u, is essentially proportional to T®, for long-lived chronometers
(AT<<1) equation (3.11) reduces to
T - t,A™ _ A, {3.13)

which is the long-lived limit obtained by SW, with t, in place of <r>. Equation
(3.13) makes sense because a sufficiently long-lived chronometer sees nucleosyn-

thesis as a single event at its mean age t,. Clearly, then, the moment terms in
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equation (3.12) represent corrections to the long-lived limit due to the finite life-

times of the chronometers in question and Galaxy evolution,

IV. Model-Independent Constraints

Calculation of T - t, from equation (3.12) requires knowledge of the various
u's, which in turn require knowledge of ¢(t) and T. These, however, are parame-
ters we are trying to determine. In the long-lived limit, however, equation {3.13})
shows that we need no information on ¢(t) or T to calculate T - t,. This is, of
course, the significance of the long-lived limit. Meyer and Schramm (1985}, how-
ever, have shown that the supposedly long-lived chronometric pair #2Th/®*U may
not be suflficiently long-lived that equation (3.13) holds, although it probably does
for '®Re/*®0s. Thus comparisons between their respective mean ages should be
made with caution. In any case, it is clear that we must know (or at least
suspect) that a chronometric pair is long-lived before we use equation (3.13).
This, however, requires comparison of T - t, calculated from equations {3.12) and
(3.13); thus, we are again confronted with the dilemma of having to know ¢(t)

and T before calculating them.

The common way out of this dilemma is to essume some g(t) (i.e. Galaxy
evolution model). The results thus obtained are clearly model-dependent. We

wish to attempt a solution to the problem that is as model-independent as possi-

ble.

Before attempting to determine upper limits on T, we note that since the

higher moment terms in equation {3.12) tend to increase T-t, over A™* . A (see
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e.g. Meyer and Schramm 1985), A™* - A provides a lower limit on T, that is,
T>AD A, (4.1)

If we know t,/T, we can push this lower limit up to

-1

t, .
T2 (1-) (a™-a). (4.2)

In section VI we will derive limits on t,/T.

Let us now consider possible upper limits on the p's defined in equation (3.8).
In the case where n is even, p, will be maximized for a ¢(t) that has its production
as far as possible from t=t,. We are thus led to conclude that the normalized

effective nucleosynthesis rate that gives the largest possible g, is of the form
¢{t) = CHt) + Dt - T). (4.3)
The coefficients C and D are determined from equation (3.4) and normalization,
which yield
D= (4.4)
and
C=1-D. (4.5)
Substitution of equation {4.3) into (3.8) and integration yield

#n

= ={1-D)D*+ D(1 - DJ, (4.8)

since n is even. Maxima of equation (4.6} are those D satisfying

nD* !~ (n + 1)D*+ (1 -D)* - nD{1 -DP* ' = 0. (4.7)
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For n=2, D=1/2. For n=4, D=1/241/v12. These give

2% ] 1
— L 4.8
T‘.E i | ( )
and
Hy 1
<1 (4.9)

In the case where n is odd, u, measures the asymmetry of ye’ about t=t,. It
is not as clear for this case what the maximizing shape of ye* would be. In the

appendix we are able to make general arguments that result in a limit

233 1

™~ &1 (4.10)
Alternatively, we may again use equation (4.3). For n odd, we find
(139 - -
F=(D-1)D + D(1 - D)~ (4.11)
The maxima now occur for D satisfying
(n+ 1)D° - nD*~ 1 4 (1 - D)® - nD(1 - D)* = 0. (4.12)
For n=3, D = 1/2+1/V12, which yields
Ha 1

The limit in equation {4.13) contains that in equation (4.10), and, hence we will

use 1t.

We now substitute equations (4.8), (4.9}, and (4.13) into equation (3.12) to

get
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T-t, < (A™ - A) + %(xi + \)T? + E‘;’-z-(xf + Ay + AT +

1 M- 4 )
ﬁ(_—‘u—)\i_kj )T + 1 (4‘14)

where we have used the fact that x,/6 > »,/6 - ¢,>. Equation (4.14) can be solved
iteratively if the chronometers allow the sum on the right hand side to converge

sufficiently rapidly and if t,/T can be estimated. This is best done by writing
T—t, = (A™ - A)(l + ¢). (4.15)
¢ 15 the sum of all of the higher moment terms in the expansion in equation

(4.14). Substitution of equation (4.15) into equation (4.14) yields

%{1 - —) v+ MA™ - A)L + Pt — (1 - —)*“(x2 + Mh + ME(A™ - AP + ) +

312
1 t, -4 )\14“)\34 max 3 4
An upper limit on T is thus
T<(1- %)-l(am CA)1 + 6 (4.17)

As mentioned above, in section VI we will see that limits on t,/T can be

estimated.

V. Galaxy Evolution Constraints

In the preceding sections, we have seen that we can get upper limits on T

provided we know t,/T. 1In this section and the next, we derive a means of

estimating t,/T.
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It is possible that certain radionuclides are sufficiently short-lived that essen-
tially all of the nuclei produced prior to some time t=% make no contribution to
the abundance of that nuclide at t==T+4+A. Assume this is true for nuclide i. In
this case, we can write equation (2.3) as

T
N{(T+4) = Pie_kiae“’rr)f pee MT g, (5.1)

T

where 7 has replaced zero as the lower limit on the integral. We now define an

average nucleosynthesis rate <y>;, over the interval 7 <t<T:

o —M(T)
e

15—

Ye dt

-

<P>;, = (5.2)

T A (T-0)

Je ™ e
This average rate is exactly analogous to the average rate defined in equation (14)
of Reeves and Johns (1976). The difference is that the integrals in equation (5.2)

above begin at t=r7 instead of t=0. By varying 7, we are able to average ye*

over a variety of intervals.

Substitution of equation (5.2} into equation (5.1) and integration yield

P e Dy o L e_)"'(T_;i))
NYT+4) = Y - : (5.3)

We can express T - 7, as some number o, of half-lifes of nuclide i, that is,

T - Ty = ayf. (5.4)

We are thus able to write

N(T+4) =
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by the definition of the half-life. In the case where we choose 7 = 0, however, it

is more convenient to stay with equation (5.3) in the form

A
P. i -L’(T)< > N
e e )\ Y O.E(l e xl‘r” (5.6)
i

N,(T+AJ =

which might be called the Reeves and Johns form.

If we have two nuclides i and j, with two different r, and 1, respectively, we
can choose 7 and 7 such that we average over the same number of half-lifes for

each, that is, oy = ¢;. In this case, we find from equation (5.5) that

<¢'>?;.l e("i“i)A M
<v>r; R

(5.7)

where R(i,j) is the standard nucleocosmochronology input parameter defined in
equation (3.10).
The significance of equation {5.7) is two-fold. First, it is independent of T.

Second, it is independent of the number of half-lifes we average over since we

average over the same number of half-lifes for i and j.

We now make the convention that nuclide i is shorter-lived than nuclide j,
that is, r,<r. The interpretation of equation (5.7} is then simple. If
<w>;i'l/<¢>;;-j is approximately one, then ye’ was roughly steady over a few
times #; if <y>;,/ <y>7, <1, then ye’ was generally falling over a few times r;
and if <w>;;’i/<¢r>;;d >1, then ye* was generally rising over a few times r.

In all of the above we have assumed that essentially all of the nuclei pro-

duced prior to t = 7 have decayed by t = T. This is not the case for the long-

lived nuclei, which may have half-lifes comparable to or even greater than T.



- 16 -
Clearly, in this case, we must use equation (5.8) for nuclide j, which yields

U250 N

LYoy ~R(i,) (1- (_:12_)";') N

(5.8)

This depends on both o, and T. If we allow o to grow, eventually o, will be

greater than T, and we will then have to use

<o _ S-S N (59)
<S>0 R (e N ‘

a)A

which is equation (15) of Reeves and Johns (1976) multiplied by a factor TR,

If we wish to compare short- and long-lived chronometers, we are forced to
use equation {5.8). Equation {5.7) is still useful, however, since it gives an upper

limit on <¢'>ﬂvl/<w>r}J’ independently of T. This is clear since the largest
(1-¢"")/(1 - ¢") can be is unity. Correspondingly, equation (5.9} gives the smal-
lest possible value, for a given T, for the ratio <Y/ <>y since equation (5.9)

is the limiting case of equation (5.8) for large o;.

VI. Constraints on t,/T

With constraints on ye" available over a variety of time intervals, we now
use this information to constrain t,/T and to provide a means of solving for T

directly.
1) Galaxy Evolution Constraints

We define the parameter r{i,j) as the ratio of <:,b>i/<ﬁ:>j, where <y>/<y>

is given by equation {5.7), {5.8), or (5.9). Let us now assume a set of m
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chronometers. We label our longest-lived chronometer by i=1, the next longest-
lived by i==2, and so on to the shortest-lived labelled i=m. It is now possible to

develop Galaxy evolution constraints.

To begin, let us assume we have two chronometers. r(2,1) is the ratio
<Y> o/ <P>5 If we average ve” for nuclide 1 over all of T, then o, = T/r.
Now let us take a, = a;, then r(2,1) represents approximately the ratio of ye” over
a, half- lifes of nuclide 2 to e’ over a, half-lifes of nuclide 1. We thus assume
ye’ = 1{1,1})=1 (in some arbitrary units which do not matter since we will eventu-
ally normalize to get ¢(t)) from t=0 to t=t, = ey(r, - 7;) and ¢e* = r(2,1) from
t==t, to t=T.

The above picture of a single step Galaxy evolution function is clearly quite
crude. Tt does give, however, at least some indication of the overall trend of ye”
over time. Moreover, we improve the "resolution” by including more chronome-
ters. The constraints we get, by complete analogy with the two chronometer

case, are
we’ =r{i,1) for t,_; <t <t, (6.1)
where i runs from 1 to m, the total number of chronometers, ¢, is defined by
ty = on(r - 141, (6.2)

and a, = T/r, as before. The boundary condition on t; is t,=T, which translates

to r, 4+, =0.
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ii) Constraints on t,/T

From the above constraints we calculate the normalized effective nucleosyn-

thesis rate over t,_, < t < t, (see equation {3.1)):

by = b in (6.3)

Tjir(i,l)(n ~ 1)

and the ratio of the mean time for formation of the elements t, (see equation

(3.4))to T
t ir(i,l)[(n ~ 141 - (-
=== (6.4)

A3 i) - 4 )
=l

In the case of steady synthesis, r{i,1)=1 and, hence, f}¢i= 1/T and t,/T=1/2, as

=i
expected.

Use of the upper limits on r(i,1) from equation (5.7) gives an upper limit on
t,/T. We note the sell-consistency of the approach in this case since these max-
imum r(i,1} are all calculated by averaging over the same number of half-lifes
while t,/T is also computed by looking over the same number (e} of half-lifes for
each nuclide. Furthermore, we expect o, to be greater than 1.0 since we will take
7, =1 of ®Th=14.1Gyr and T may be as large as 19Gyr (Meyer and Schramm
1985) or larger; thus, it makes sense to average over the same number of half-lifes

for all nuclides, that is, it makes sense to use equation (5.7} to compute the max-

imum r{i,1).
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Where it does not make sense to average over the same number of half-lifes
1s the case for the lower limit on t,/T. T may be as small as 1.8 Gyr (Mever and
Schramm 1985); therefore, a,=0.13 if r, = r of ®*Th. In this case we would only
be averaging ve” over 0.13 half-lifes of the various nuclides. This would not be
appropriate for a nuclide like ?**Pu for which ==0.08Gyr and which, consequently,
has 22.5 half-lifes in 1.8Gyr. Since this would give an overestimate for

<¥>;/<¥>;, and we want absolute lower limits on the r(i,1} to get a lower

limit on t,/T, we must either restrict our set of chronometers to ones for which 7
< T or find an alternative means of getting a lower bound on t,/T. Since the
lower.bound on T of 1.8Gyr limits us to the two chronometers Py and 2*U
(r225=0.70Gyr), and since there are fairly large uncertainities in the data for 24Py,
we find it advisable to seek an alternative method for determining t,/T which can

use the other, less uncertain, chronometers.

Such an alternative method is to consider two chronometers in the single
step function of section Vi. We relax the constraint that the time intervals over
which we integrate this model are 0 <t <t, and t, < t € T. Instead we replace t,

by aT, where 0 € a < 1. Normalization yields

1

M) = e s

for 0 <t < aT (6.5)

and

- 12,1}
Tla + r{2,1)(1 - a)]

#(t) for aT<t<T. (6.6)

This ¢(t) yields a mean age

t,

o [a? + r(2,1)(1 - a%)]
T

1
2 [a+r21)(1-a)]

(6.7)
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Let us now find extrema of t,/T at

_r(2,1) - Vi(21)
T T e -1 (6.8)

since 0 < a < 1. Substitution of equation (6.8) back into equation (6.7} yields

2% 1‘(2,1) - Vri2,1 (69)

T 2,1) -1

We can thus identify a with t,/T. The smallest possible value for r{2,1) (calcu-
lated from equation {5.9)) then gives a lower limit on t,/T. We will compare the
results from equations (6.4) and (6.9). We may also use equation (6.9) to obtain

upper limits on t,/T if we take maximum values for r(2,1).
iii) Explicit Constraints on T

From the Galaxy evolution constraints developed in the last two subsections,
we are also able to solve equation (2.3) directly. Using equation (6.1}, we find for

the chronometric pair i and j

& M M-t
Yok, 1) - e Y
N(T +8) Py o-aa -3 k=

——— = e (6.10)
N n , 4
J(T + A) P, A Er(n,l}(e)’t“ _ e}"t"“)
=1
If we use equation {6.2) and assume o, = T/r, we obtain
m RIS S VAL
1 1
IKélr(k,l)(e —e ) Ny i 8
"nt1 ! =N R(1,) (6.11)
m ST AT j 2
et o-e )
n==1

This can be solved numerically for T. Use of maximum values for the r(k,1})’s

gives an upper limit on T. We may alternatively take t, = aT and t, = T for the
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single step constraints of equations (6.5) and (6.6). These yield

(e—{l -aNT e_xi'r) (2, 1)(1 - e{l~a))\i'l‘] _ _)1 LA
Ty prz ) - A R(L)

(6.12)

We can solve this numerically for limits on T.

VII. Data

The accuracy of any constraints in nucleocosmochronology rests fundamen-
tally on the accuracy of the data. In Table 1, we present the best current esti-
mates of decay rates, the ratios R(i,j), and resulting A™ 's for the Re/Os, Th/U,
U/U, and Pu/U pairs.

i) Re/Os

The long-lived chronometric pair *Re/'®0s, first proposed for study by Clay-
ton (1964), is unique because ¥0s is stable and has no direct contribution from
the r-process since it is shielded from g-decay from below by ¥Re. Clearly, then,
the formulae required to derive R(187,187) (see equation {3.10)) are different from

those of other chronometric pairs.

R(187,187} is given by (Schramm 1974)

(18705)
R(187,187) = 1 + Tﬁ‘ﬁ;i’

(7.1)
where ('*¥0s), 1s the cosmoradiogenic contribution to the ®70s abundance, that is,
the contribution arising from g-decay from ®Re. The rest of the '¥70s comes from

the s-process; hence, we denote this contribution (**0s),. Since the ®0s is not

shielded and, consequently, not changing after nucleosynthesis, we can write
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(WIOS): - 187(yg (18705).

180s  1800pg 18005 (7.2)
By use of the so-called "local-approximation” in the s-process
(**70s), {a187)s0ev == (" 08)s (T186)s0kevs (7.3)
we may write
e = 2, (7.9
after Yokoi et al. (1983), where
f= (2%) X1, xf. (7.5)
O187 b

The ¢'s are neutron capture cross sections measured in the lab for **0s and ¥0s,
f, is a factor allowing for conversion from lab cross sections to cross sections ther-
malized to a temperature of 30 keV with the nuclei starting at that level of exci-
tation, that is, at conditions appropriate for the s-process inside stars, and f, is a
factor allowing for s-process branching in the W-Os region. Normalization of

equation (7.4) by '®0s/"®Re then gives the required ratio (*¥0s)./'¥Re.

A major uncertainty in the Re/Os pair that limits its use is that astration
greatly enhances the 'Re g-decay rate over the lab rate by bound state decay
(Takahashi and Yokoi 1982; Yokoi et al. 1983). To compute the Galaxy's age
accurately from this pair thus requires a detailed Galaxy chemical evolution
model to determine the amount of time ®Re spends at various temperatures
inside stars as well as an accurate estimate of )& as a function of temperature.
Others have followed this tack (Yokoi et al. 1983). We will instead notice that

the effect of astration is to increase g, so that use of the lab ),z In conjunction
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with equations {3.10) and (7.1) provides an upper limit on AT ;.

For the Re/Os pair, Ay = > g and )y = 0; hence, equation (4.16) becomes

£ —(1- t%)’?(lnR(IS'I,lS'{))(l + €)F + 3%{1 - %)*3(111[1(187,137))2(1 + e+

OOIr—ﬂ

1 L, 4 4 C
+ sg(1~ ) (aR(ISTIBT)YL + o) + (7.6)

where we have made use of the fact that A™ - A=A™ (since A < 0.2Gyr (Sym-

balisty and Schramm 1981)) and of equation (3.10).

The significance of equation (7.6) lies in the fact that when we calculate the
higher moment terms for Re/Os, these terms will be independent of \g. This
puts us in the unique position of knowing the maximum possible corrections to
T - t,, as derived from Ay - A, better than we know AT s - A itsell because of
the uncertainty in the effective )5, Furthermore, if we can show that the higher
moment terms are all small, then the ®Re/!®0s pair behaves as if it is long-lived,

independent of \ig;.

The remaining uncertainties in the 'Re/'®0s pair are the uncertainty in the
amount of s-process branching in the W-Os region (fy} (Arnould 1974; Arnould et
al. 1984) and the uncertainty in the factor f, (Fowler 1973; Holmes et al. 1976;
Woosley and Fowler 1979) in equation (7.5). Yokoi et al. (1983) estimate that the
combined uncertainties in f, and 1, yield a range of 0.41 < 1, < 0.58. Arnould et al.
(1984) argue, however, that s-process branching uncertainties lead to much larger
ranges 0.18 <[, <069 for 1<, <115 or 0.15 <M, <069 for 081 <f, <083 We
could thus take an extreme range 0.15 < f, < 0.60. In what follows, we will prefer

041 < f, < 0.58 but will also consider the effect of the 0.15 < 1, < 0.60 range.
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The other information we need to calculate R(187,187) are the meteoritic
ratios (*¥0s/'%0s)r ; o and (*°0s/"™Re)r 4 5. A [airly recent, self-consistent determi-
nation of ('"¥0s/"™O0s)r, » and ("Re/"™0s)r,; » is that of Luck et al. (1980), who
obtain 0.805+0.011 and 3.2(+10%%) for these two numbers, respectively. With
these numbers, we find 1.06 < R(187,187) < 1.14 for the range 0.41 <f, <0.58. For
the extreme range 0.15 < I, < 0.69 we find 1.03 < R(187,187) < 1.23
ii) Th/U

The #*Th/®®U production ratio is quite uncertain. Symbalisty and Schramm
(1981) give the wide range 1.9%7. Thielemann et al. (1983a) include p-delayed
fission in their calculations of P, /P, and find a value of 1.4. Meyer et al. (1985)
find in a self-consistent calculation less g-delayed fission than Thielemann et al.
which suggests a higher production ratio; thus, we will take 1.4 as a lower limit
on the production ratio. Because the new value for the sum of the o-decay and
pdecay branching ratio for *Cm (a progenitor of ®*U) is 35% (Schmorak 1981),
up from the value of 10% used by Seeger and Schramm, we lower the Seeger and
Schramm value from 1.9 to 1.8. We ther use this 1.8 as an upper limit on
Payo/P2s since the original calculations of Seeger and Schramm, included no g-
delayed fission and some gdelayed fission undoubtedly cccurred. We will also
take 1.6 as a compromise best value. We note, however, that the calculation of
Meyer et al. did not include fission barrier penetration so that a lower best value,

nearer the value of Thielemann et al., should perhaps be favored.

SW argue that the present solar system value for **Th/®%U is 3.9. They note

that terrestrial lead isotopic ratios evolved from a ®?Th/*%U ratio in the range 3.7
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to 4.1 with 3.9 as the best value. Since this ratio seems to apply to essentially all
rocks of all ages, they conclude that it is a ratio characteristic of the earth as a
whole and is the one consistent with the standard 4.55 Gyr age of the solar sys-
tem. They also note that the lead in meteorites such as Nuevo Laredo evolved
from a *2Th/*?U ratio identical to the terrestrial lead ratio. C1 chondrites, how-
ever, give perhaps the most primative solar system abundances not obtainable
from observations of the solar atmosphere (Anders 1971). We have data on tho-
rium abundances in the Cl chondrites Orgueil, Ivuna, Alats, and Tonk
(Tatsumoto et al. 1876; Morgan and Lovering 1968). From this set we neglect
those values of Morgan and Lovering which are anomalously high since they
probably resulted from contamination (Anders 1988). We also have data from
the same set of meteorites on the uranium abundances (Tatsumoto et al. 1976;
Krihenbuhl et al. 1973; Morgan and Lovering 1968; Reed and Allen 1966; Reed,
Kogoshi, and Turkevich 1960). We have again neglected those values of Morgan
and Lovering which are anomalous. Individual meteorite (atomic) ratios we find
from the Morgan and Lovering and Tatsumoto et al. data are 4.10 (Alais); 2.36,
3.80, and 3.69 (Ivuna); 3.49 and 4.41 (Orgueil); and 2.98 (Tonk). The wide
spread shows that chemical fractionation probably played a large role in the
Th/U ratios in C1 chondrites. From averages of the two sets of data from all
five sources (nine thorium measurements and 16 uranium measurements), we find
an abundance ratio of 3.72. This value is contained within the SW lower limit;
hence, we choose 3.7 as our lower limit on the Th/U ratio. We also choose 4.1 as
an upper limit since it contains the 3.9 value from leads and the values from five

of the six individual meteorite measurements. Since the Th/U ratio is not an
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isotopic ratio, simply dividing Th abundances in C1 chondrites by corresponding
U abundances may not take into account differences due to the different chemical
natures of the two elements, as possibly evidenced by the variations seen in the
individual C1 chondrite measurements. The ratio obtained from terrestrial leads,
however, integrates over variations found in the Th/U ratio measured directly in
rocks (SW). As a consequence, we still take 3.9 and believe it is the best and
most consistent value for cosmochronological purposes. Our present day
22Th/*3U ratio is thus 3.9£0.2, the SW range.
i) U/U

The value given by Symbalisty and Schramm {1981) for the production ratio
of ZU/™U is 1.5%%¢. SW give the range 1.53%. Thielemann et al. (1983a) get 1.24,
which is easily contained in both of the above ranges. The calculation of Meyer
et al. (1985), as mentioned above, gives less delayed fission than the calculation of
Thielemann et al., which indicates a production ratio closer to 1.5 and a lower
limit given by the Thielemann et al. value; thus, the Symbalisty and Schramm
lower limit is probably too low. Furthermore, since the effect of delayed fission is
probably to decrease Puy,/Pus from roughly 1.5, we expect the Symbalisty and

Schramm upper limit to be too high. We thus choose the SW range as the best

range for this production ratio.

The terrestrial abundance ratio for the #°U/?®U pair is quite well known.
The standard value from uranium-bearing ores is 1/137.88. Cowan and Adler
(1976) in their precision mass spectrometry of a large number of ore samples from

around the world found an approximately bimodal distribution of #*U/®#U around
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the standard value and around roughly 1/137.95. The latter value was derived
mainly from ores from the Colorado Plateau, which may have been subject to
chemical differentiation of the U isotopes, although Cowan and Adler found at
the time of their paper that insufficient data existed to make that conclusion. In
any case, the results we may derive from Cowan and Adler's ®*U weight percen-
tages, U/ = 1/(137.88%04%), are contained in the value 1/{137.88+0.14), given in

Barnes et al. {1972), which includes lunar data.

Arden (1977) found large variations, up to about 29%, in #®*U/**U in a
variety of chondritic meteorites (including Allende). Tatsumoto et al. (1980) and
Tatsur-noto and Shimamura (1980) found approximately 79 variations in 2%U /%8
in the Allende meteorite, which they interpreted as evidence for the presence of
live #*°Cm at T + A which then fractionated to varying degrees from the U to give
the variations observed. This *’Cm may have been injected into the solar system
material in the same event that contributed the live 2Al, '“Pd, and . Chen and
Wasserburg (1981), however, find that 2*U/%8U ratios from Allende inclusions
agree quite well with the standard value. From these results, they conclude that
live *’Cm may indeed have been present at T + A, but only at low levels so that
Cm/U fractionation would have had a negligible effect on the U/U ratio. The
agreement between the Chen and Wasserburg values and the standard value and
the possibility of isotopic contamination in the analysis of Tatsumoto et al.
(Symbalisty and Schramm 1981) lead us to conclude that the present day 2%U/*®U

solar system abundance ratio is 1/{137.88+0.14), the concordant terrestrial-lunar

value.
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iv) Pu/U

Symbalisty and Schramm give 0.93)} for the **Pu/**U production ratio. This
chronometric pair is extremely sensitive to delayed fission, however, as evidenced
by Thielemann et al.’s value of 0.12. The results of Meyer et al. tend to indicate
a value somewhere in between these two ranges. We will accept for the present a
large uncertainty in the **Pu/>*®U production ratio and, thus, take the range
0.12 < Ppyy/Pasg < 1.0, with 0.56 as a compromise best value. Again, the fact that
barrier penetration was not included in Meyer et al. might lead us to favor a

lower best value.

The 2*Pu/*®U abundance ratio is found from decay products of *Pu.
Ganapathy and Grossman (1976) proposed that the solar system *'Pu/*®U abun-
dance ratio be determined from coarse-grained Ca-Al-rich inclusions from Allende
since they found that in ten such coarse-grained inclusions the average relative
abundance of 21 refractory elements was unfractionated with respect to Cl
chrondrite abundances. The advantage of these inclusions is that absolute con-
centrations of these elements are some 18 times greater than the C1 abundances.
Drozd et al. (1977) obtained a ratio of 0.016 at T + A from a coarse-grained inclu-
sion from Allende, which agrees well with 0.015 at T + A obtained by Podosek
(1972) from St. Severin. Marti et al. {1977) found a Pu/Nd atomic ratio of
8.2 x 10 from a coarse-grained inclusion in Allende. Burnett et al. (1982) use this
number to find 0.0040 for Pu/U at T + A. Boynton (1978) argued that the
apparently high Th/U ratios obtained from coarse-grained inclusions probably

resulted from U depletion. This suggests that U abundances used by Drozd et al.
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(Shirck 1975) may be systemically too low and, thus, that we should prefer 0.004
to 0.016 for the Pu/U ratio at T + A. This seems to be confirmed by the results
of Hudson (1981) who got 0.005 {from a re-analysis of St. Severin. This value is
also corroborated by Marti et al. (1977) who proposed from analyses of achrondri-
tic meteorites a value of 0.004. We thus choose the value suggested by the work
of Hudson et al. (1982) of 0.005+0.001. We note, however, that there is potential

for much greater uncertainty than is included in this range.

The decay rates we use throughout this work are A\, = 8.4740.27 x 1079 yr!
(Fields et al. 1966), )5 =9.8485£0.0135x 107 yr* (Jaffey et al. 1971),
hggg == 1.551240.0017 x 107 yr! (Jaffey et al. 1971), and X = 1.59%5 x 107¢ ye!
(Linder et al. 1986). The errors on Xy, and X are two times those quoted in
Jaffey et al. since these authors claim systematic errors should no more than dou-
ble their quoted errors. The quantity t, has been well established as being
between 4.5 Gyr and 4.6 Gyr since the lead-lead age determination of Patterson
(1955). The best value now is the standard 4.55 Gyr (see for example Tatsumoto

et al. 1976).

VIIIL. Results
i) Ratios of Average Nucleosynthesis Rates
Table 2 shows the results for <‘b>ﬂdl<w>ﬁd as calculated from equation (5.7)

for A=0.0Gyr, 0.1Gyr, and 0.2Gyr. Table 3 shows the results for <y>y,/ <>
as calculated from equation {5.9}). The numbers in Table 3 can be directly com-

pared with those in Table 1 of Reeves and Johns (1976).
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The numbers in Table 2 are the maximum values for the ratios and are all
relatively close to 1.0, which suggests that ¢e* was roughly steady (to within a
factor of two or so) over most of T. Errors allow these numbers to vary by a fac-
tor of 3, except for the Pu/U ratio, which is extremely sensitive to A and to
uncertainties in its inpurt data and, consequently, varies from 1.0 by as much as a

factor of 16.

The numbers in Table 3 for T=2.2 Gyr are the minimum values for the
ratios. Except for Pu/U, these are also within a factor of two or three of 1.0,
which again suggests ve* was roughly steady over most of T. The other numbers
in Table 2, for T=5.0Gyr, 10.0Gyr, and 15.0Gyr, show even better agreement
with the idea of rough constancy of ye*. We thus conclude that ve* was constant
over T to within a factor of two or three, except perhaps for the last events
which produced the *'Pu that we infer was present at t=T. We note, however,
that the large range for the Pu/U ratio comes from a large range in the #*Pu
input data; hence, we should expect much better numbers when the Pu/U pro-
duction ratio is better determined.

i) t,/T

From Table 2, we can assign maximum values to the numbers r{i,1) defined
in section V. We take for i==1 #*2Th, for i=2 #*U, for i=3 2*U, and i=4 for ***Pu.
Allowing for the extreme values, we find r(1,1)=1.0, r(2,1}=2.49, r(3,1)=4.96,
and 1(4,1)=40.5. From equation (6.4) then we get an absolute maximum
t,/T =068. If we do not include r(4,1) because of the uncertainties in the **Pu

data, we find a maximum ¢,/T = 0.63. If we use equation (6.9), the t,/T from the
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single step function, and r(2,1)=2.49, we find t,/T = 0.61. Finally, if we again use
equation (6.9}, but this time for the U/U pair, we find ¢,/T = 0.59. Since the U/U
time scales are the optimal ones for exploring overall Galaxy evolution, we prefer

0.59 as the upper limit on ¢, /T.

From Table 3 for T=1.6 Gyr, we get the following minimum values for the
r{i,1)’s: r(1,1)=1.0, r(2,1}=0.59, r(3,1)=0.22, and r(4,1)=0.035. To use equation
(6.4), we take r{3,3)=1.0 and r(4,3)==0.18, that is, our restricted set of chronome-
ters. These numbers give us t,/T = 0.45. From equation (6.9) and r{2,1)=0.59,
we find t,/T = 043. From equation (6.9) and use of (3,2} in place of r(2,1), we
find t,/T == 0.38. The agreement of the first two of these limits leads us to favor a

lower ¢,/T of 0.43.

To summarize, theﬁ, our range is 0.43 < t,/T < 0.59.
iii) e and T

The lower limit on (A%, - &) is 2.2 Gyr. From the lower limit on ¢,/T of
0.43 and A < 0.2 Gyr, we find T 2 39Gyr or Tg, = 8.7Gyr. When we use equation
(6.12), r(2,1}==0.58, and a==0.43, the limit on Tg, becomes Tq, > 8.9 Gyr. Using
equation (6.12), r(3,2)=0.30, and a=0.43, we find Tg, 2 8.4Gyr. Higher moment

terms thus increase the lower limit on T, by only 2% or so from the single event

age corrected for t,/T = 0.43.

Tables 4 and 5 show values of ¢, T, and Tq,, as calculated from equations
(7.6) and (4.17), for values of ¢,/T from 0.2 to 0.8. The values in Table 4 come
from an R(187,187)=1.14. The values in Table 5 come from an

R(187,187)=1.23, which is the extreme value allowed by the Arnould et al. {1984)
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value of 1, From Table 4, we find ¢ <0.13 for t,/T = 0.59, which indicates that
the Re/Os pair is long-lived to better than 13%. We also find for ¢,/T = 0.59 that
T < 23.3 Gyr. This yields Tg, < 28.1Gyr. From Table 5, we find Tqy < 46.3 Gyr. An
upper limit of 46.3, or even of 28.1 Gyr, is not particularly useful. We do note,
however, that for t,/T = 0.50, we get Tg, < 23.0Gyr for R{187,187)=1.14. An
upper limit of 23.0 Gyr would be a fairly useful number since it is near the limits

imposed by Thielemann et al. (1983b).

Because of the uncertainties in R(187,187), we may ask whether the Th/U
pair might give us a better upper limit. Using an upper limit on Ao, of 5.5
Gyr, we find no convergence of equation (4.16) to fourth order in e. We thus con-
clude that Th/U cannot be considered a long-lived pair since ¢ is greater than or
comparable to 1 for the upper limit on A%, As a consequence, any upper limit

on Tgy derived from Th/U will be model-dependent.

From equation (6.11), R(238,232)=1.79, and the upper limits on the r(i,1)’s
(but not including r(4,1) because of the uncertainties in the Pu/U pair), we find
Tau < 36.2Gyr.  From equation (6.12), r(2,1})==2.49, and a=0.59, we find
Tea < 23.6 Gyr, which lowers the Re/Os upper limit of 27.1 Gyr. We note that
using AR, = 5.5 Gyr gives Tg, = 18.0 Gyr in the single event model plus corree-
tion for t,/T = 0.59. Higher moment terms thus increase the Th/U upper limit on
T by 42% from 13.2 Gyr to 18.8 Gyr. Clearly the Th/U pair is not long-lived in

this case.

To summarize, we find a model-independent range 8.7 Gyr < Tgy < 28.1Gyr.

Again we must emphasize that uncertainties in R(187,187) do not allow us to



- 33 -

claim this upper limit as absolutely firm, despite its large value. The more
model-dependent equations of section VIiii narrow this range somewhat to

8.9 Gyr < Tgy < 23.6 Gyr.

IX. Conclusions

Qualitative conclusions we may derive from this work are that I) upper and
lower limits on the age of the Galaxy can be obtained that depend only on ¢,/T
but are independent of any other model-dependent information and of the major
uncertainties in cosmochronological input data, 2) cosmochronological input data
itself can provide the limits on t,/T necessary to obtain the limits on the age of
the Galaxy via a method which depends only on the lifetimes of the chronometers
in question, not on any biases about the form ye” should take, and 3} the cosmo-
chronology input data can ..30 give rough constraints on the overall constancy of

ve’ over T.

Quantitatively, we find limits for ¢, /T of 043 <t /T <0.59. From these
numbers we find that we can place a lower limit on Tg, of 8.7 Gyr and an upper
limit of 28.1 Gyr. The uncertainty in R(187,187) does not allow us to claim this
upper limit as absolutely firm, however. We also find quantitatively that e
probably did not vary by more than a factor of three over most of T but that
uncertainties in the short-lived chronometers do not preclude the possibility of

large changes in ye® for t near T.

The range for Tg, that we find is discouragingly large. This really reflects,

however, the uncertainties in the cosmochronolegical data rather than any real
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failing of the methods described in this paper. In particular, we note that calcu-

lation of <¥>,/< v depends on R(i,j}, not on In(R(i,j)} as does the calculation

of AP thus, parameters giving constraints on Galaxy chemical evolution are
quite sensitive to errors in the production and abundance ratios. The upper lim-
its we obtain are also sensitive to the extremely uncertain parameter R(187,187).
We can expect better limits when these input data errors are narrowed. Indeed,
we have noted that if input data improve to give t,/T~0.50, as expected from the
work of Hainebach and Schramm (1977}, we find a useful upper limit on Tgy of

about 23.0 Gyr.

For comparison with our model-independent range, we may consider some
model-dependent age ranges. In particular, we can determine ranges on T, for
our range on ARy of 1.8 to 5.5 Gyr by looking at Hainebach and Schramm’s
figures 2, 4, and 5 which represent their solutions to the standard Galaxy evolu-
tion model (Tinsley 1975), the metal-enhanced star formation Galaxy evolution
model (Talbot and Arnett 1973), and the halo-disk Galaxy evolution model
(Ostriker and Thuan 1975), respectively. For the standard model we find a range
for Tq, of 8.7 to 18.8 Gyr. For the metal-enhanced model we find the range 9.0
to 18.5 Gyr. Finally, for the halo-disk model we find the range 8.7 to 18.5 Gyr.
These ranges are certainly narrower than our range; however, they are dependent
upon the models and on the parameters chosen for those models. Our range is

independent of such considerations.

We should note in closing that an absolutely accurate upper limit is prob-

ably not attainable from this method since use of equation {3.10) and the lab 'Re
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decay rate can only give an upper limit on A%, Once we obtain the best possi-
ble data for the Re/Os pair, we might be able to improve our upper limit on Tg,
through detailed Galaxy evolution models which can determine the amount of
astration of '®Re and, hence, the true value for the effective '®Re decay rate.
Alternatively, we may use the Th/U pair. As we have shown, however, this pair
cannot be considered long-lived in the calculation of upper limits for T, hence,
any upper limit we derive from it will also be model-dependent. It will be a sign
of great progress, however, when our major concern is the model-dependency of

our upper limits rather than uncertainties in the data.
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Appendix

In order to find maximum values for u,/T" when n is odd, we note that the
factor (¢t - t,})* in the integral in equation (3.8) is odd about t=t,. To get the larg-
est u, possible, then, we want the contribution from t<t, to be as small as possi-
ble and the contribution from t>¢, to be as large as possible. We have found in
section VIIIi that ye', and hence ¢(t), probably did not vary by more than a factor
of three (except possibly over a very small time scale just before t==T). Since
¢(t)=1/T for a steady synthesis solution (see equations (3.I) and (3.2)), we can
safely assume that ¢(t) = 1/3T for t<t, and ¢(t) <3/T for t>t,, From these

numbers, we find

Bs _ 3 NN
-,i;gs,?(l——,l:)—‘i-é*(T)- (A.1)
With the lower bound on t,/T of 0.43 from section VIIIii, we find
21 (A.2)

T 13.1
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Table 1
Pair M(Gyr™) MGyr™) R{i.j AT(Gyr
J i
Re/¥0s  0.0162(+0.0003,-0.0003) — 1.03-1.23 1.8-13.4
S2Th/*®U  0.0495(+0.0000,-0.0000)  0.1551(+0.0002,-0.0002)  0.67(+0.11,-0.11) 3.8(+1.7-1.4)
2y /#ey 0.985(+0.009,-0.009) 0.1551(+0.0002,-0.0002) 4.7(+1.3.-0.9) 1.9(+0.3,-0.3)
Hipy 288y 8.47(+0.27,-0.27) 0.1551(+0.0002,-0.0002) 112{+138,-92) 0.57(+0.12,-0.21)
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Table 2. Maximum <¢>?i/<¢l>;j's

Pair A=0.0 Gyr A=0.1 Gyr A=0.2 Gyr

U/Th  2.09(+0.35-0.46)  2.11(+0.36,-0.46)  2.13(+0.36,-0.47)
U/U  1.36(+0.32-0.29)  1.48{+0.35-0.32)  1.61(+0.38,-0.35)

Pu/U  0.49(+2.41-0.28)  1.12(+5.73,-0.65)  2.56(+13.7,-1.52)



Pair

A(Gyr)
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Table 3. <>/ <y>y;

T=2.2 Gyr

T=5.0 Gyr

T=10.0 Gyr

T=15.0 Gyr

U/Th

0.1

0.2

0.75(+0.13,-0.16)
0.75(+0.13,-0.16)

0.76(+0.13,-0.17)

0.85(+0.14,-0.19)
0.86(+0.15,-0.19)

0.87(+0.15,-0.19)

1.03(+0.18,-0.23)
1.05(+0.18,-0.23)

1.06(+0.18,-0.23)

1.21(+0.21,-3.27)
1.23(+0.21,-0.27)

1.24{+0.21,-0.27)

U/uU

0.0

0.1

0.2

0.44(+0.10,-0.10)
0.48(+0.11,-0.10)

0.52(+0.12,-0.11)

0.74(+0.17,-0.16)
0.80(+0.19,-0.17)

0.87(40.21,-0.19)

1.07(40.25,-0.23)
1.16(+0.28,-0.25)

1.27(+0.30,-0.27)

1.23(+0.29,-0.27)
1.33(+0.32,-0.29)

1.45(+0.34,-0.31)

PufU

0.1

0.2

0.14(+0.68,-0.08)
0.32(+1.62,-0.19)

0.74(+3.87,-0.44)

0.26(+1.27,-0.15)
0.60(+3.04,-0.35)

1.38(+7.24,-0.82)

0.38(+1.87,-0.22)
0.88(+4.47,-0.51)

2.02(+10.6,-1.19)

0.44(+2.16,-0.25)
1.01(+5.14,-0.58)

2.31(+12.2,-1.37)
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Table 4. Results for R(187,187) = 1.14'

% ¢ T(Gyr)  Tou(Gyr) % € T(Gyr)  Tau(Gyr)
0.2000 0.0276 10.9 15.7 0.5100 0.0832 18.7 23.5
0.2100 0.0284 11.0 15.8 0.5200 0.0875 19.2 240
0.2200 0.0292 11.2 16.0 0.5300 0.0921 19.6 244
0.2300  0.0300 11.3 16.1 0.5400 0.0972 20.2 25.0
0.2400 0.0308 11.5 16.3 0.5500  0.1027 20.7 25.5
0.2500 0.0317 11.6 16.4 0.5600  0.1087 21.3 26.1
0.2600 0.0327 11.8 16.6 0.5700  0.1153 21.9 26.7
0.2700 0.0337 12.0 16.8 0.5800 0.1227 22,6 27.4
¢.2800 0.0347 12.1 16.9 0.5900 0.1308 23.3 28.1
0.2900 0.0357 12.3 17.1 0.60C0 0.1399 24.1 28.9
0.3000 0.0369 12.56 17.3 0.6100 0.1501 24.9 29.7
0.3100 0.0380 12.7 17.5 0.6200 0.1616 258 30.6
0.3200 0.0393 12.9 17.7 0.6300 0.1747 26.8 31.6
0.3300 0.0406 13.1 17.9 0.6400 0.1898 21.9 32.7
0.3400  0.0420 133 18.1 0.6500 0.2073 29.2 34.0
0.3500 0.0434 13.6 18.4 0.6600 0.2279 30.5 35.3
0.3600 0.0449 13.8 18.6 0.6700  0.2527 321 36.9
0.3700 0.0465 14.0 18.8 0.6800 0.2831 33.9 38.7
0.3800  0.0482 14.3 19.1 0.6900 0.3216 36.0 40.8
0.3900  0.0500 146 19.4 0.7000  0.3727 38.7 43.5
0.4000  0.0519 14.8 19.6 0.7100 0.4464 42.2 47.0
0.4100 0.0539 15.1 © 199 0.7200 0.5751 47.6 52.4
0.4200 0.0560 15.4 20.2 0.7300  #¥#»%x
0.4300  0.0583 15.7 20.5 0.7400  *skwex
0.4400 0.0607 16.0 208 0.7500  wsxs=xx
0.4500 0.0633 16.3 21.1 0.7600  swsxnx
0.4600 0.0661 16.7 21.5 0.7700  *es%x
0.4700  0.0690 17.1 219 0.7800  #***kxk
0.4800 0.0722 17.4 222 0.7900  k*edxx
0.4900 0.0756 17.8 226 0.8000  exkrir
0.5000 0.0792 18.2 230

! Astetisks indicate that there is no conver-

gence of equation (7.6) to fourth order in .
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Table 5. Results for R(187,187) == 1.23'

Yo e TG ToulGyr) Y e TGy TedGy)
0.2000  0.0458 17.5 22.3 0.5100 0.1532 31.4 36.2
0.2100  0.0472 17.7 22.5 0.5200 0.1626 32.3 37.1
0.2200 0.0485 18.0 228 05300 0.1731 33.3 38.1
0.2300 0.0500 18.2 23.0 0.5400 0.1847 34.4 39.2
0.2400 0.0515 18.5 23.3 0.5500 0.1979 35.6 40.4
0.2500 0.0530 18.8 23.6 0.5600  0.2127 36.8 41.6
0.2600  0.0547 19.0 23.8 0.5700 0.2298 38.2 43.0
0.2700  0.0564 19.3 24.1 0.5800  0.2495 39.7 44.5
0.2800 0.0582 19.6 24.4 0.5900 0.2728 41.5 46.3
0.2900 0.0601 19.9 24.7 0.6000 0.3007 43 .4 48 2
0.3000 0.0621 20.3 25.1 0.6100 0.3350 45.7 50.5
0.3100 0.0643 20.6 25.4 0.6200 0.3789 48.5 53.3
0.3200 0.0665 209 2B6.7 0.6300 0.4386 51.9 56.7
0.3300 0.0688 21.3 26.1 0.6400  0.3307 56.8 61.6
0.3400 0.0713 21.7 26.5 0.6500 0.7841 68.1 72.9
0.3500 0.0740 22.1 26.9 0.6600  w»xdxx

0.3600 0.0768 22.5 273 0.6700  #x¥xex

0.3700 0.0797 229 279 0.6800  *dkdx#

0.3800 0.0829 233 28.1 0.6000  *sersx

0.3900  0.0862 23.8 28.6 0.7000  #wexex

0.4000 0.0898 243 29.1 0.7100  sxa*x«

0.4100 0.0937 248 29.6 0.7200  sewesx

0.4200 0.0977 25.3 30.1 0.7300  #¥dmuk

0.4300 0.1021 25.8 30.6 0.7400  wxsax

0.4400 0.1069 26.4 31.2 0.7500  wwkdex

0.4500 0.1120 27.0 318 0.7600  »#xk#+

0.4600 0.1175 27.6 32.4 0.7700  sxxxxx

0.4700 0.1234 283 33.1 0.7800  *xsxix

0.4800 0.1299 290 33.8 0.7900  #+kk#s

0.4900 0.1370 29.8 34.6 0.8000  **xxx#x

0.5000  ©.1447 30.6 35.4

1 Asterisks indicate there is no convergence in

equation {7.6) to fourth order in €.
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Captions

Figure 1. A schematic diagram showing the effective nucleosynthesis rate ye” as
a function of time. T is the total duration of nucleosynthesis and t, is the mean
time for the formation of the elements. A is the time interval between the end of
nucleosynthesis and solidification of solar system bodies. t,, is the age of the solar

system solid bodies. The total age of the elements is T + A + t.



K>

!

A

MON v+l | } 0
| | _ |
_ _ _ |
_ _ _ |
| P |
| | _ _
| | |
| | |
_.l.lllmm._. 'TQ'“ _
_ N~ _

_ 1 /,\ \ || _
_// \- \\—ll-_l./_

I~ | |
_ ! | _ |
| | |
| | |
| . |
_ | _
l P _
| . |



He

Authors' Address

Bradley S. Meyer and David N. Schramm
Astronomy and Astrophysies Center
5640 S. Ellis Ave.

Chicago, lllinois 60637



